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ON RANDOM MATRICES

by
P. ERDÖS and A. RÉNYI

Introduction

In the present paper we deal with certain random 0 - 1 matrices. Let
(n, N) denote the set of all n by n square matrices among the elements of

which there are exactly N elements (n < N < n2 ) equal to 1, all the other
n2 '

elements are equal to 0 . The set ,f(n, N) contains clearly

	

such matrices ;
N

we consider a matrix 117 chosen at random from the set fl(n, N), so that each
l-i

element of ~(n, N) has the same probability n2I to be chosen. We ask
N,

now how large N has to be, for a given large value of n, in order that the
permanent of the random matrix M should be different from zero with
probability > a where 0 < a < 1 . By other words if M = (elk ) we want
to evaluate asymptotically the probability P(n, N) of the event that there
exists at least one permutation j l , j2	jn of the numbers 1, 2, . . . , n such
that the product -,j, . E2j, . . . Enjn. should be equal to 1 . A second way to
formulate the problem is as follows : we shall say that two elements of a matrix
are in independent position if they are not in the same row and not in the
same column . Now our question is to determine the probability that the
random matrix M should contain n elements which are all equal to 1 and are
pairwise in independent position . A third way to state the problem is : what
is the probability of the event that the permanent of the random 0 - 1
matrix M should be positive?

We prove in § 1 (Theorem 1) that if
(1)

	

N(n) = n log n + cn + o(n)
where c is an arbitrary real constant, then
(2)

	

lim P(n, N(n)) = e -2e-` .
n->+

This implies that if
(3)

then
(4)

	

lim P(n, N 1(n)) = 1 ,
n-+

while if

lim N1 (n) - n log n
n =+00,

lim N12(n)- n log n
nom+ m

	

n
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then
(6)

	

lim P(n, N2(n)) = 0 .
n-.+

This result can be interpreted also in the following way, in terms of
graph theory. Let I'n, N be a bichromatic random graph containing n red
and n blue vertices, and N edges which are chosen at random among the n2
possible edges connecting two vertices having different colour (so that eachz
of the

~N
possible choices has the same probability) . Then P(n, N) is equal

to the probability that the random graph Fn , N should contain a factor of
degree 1, i .e . Fn , N should have a subgraph which contains all vertices of
Fn, N and n disjoint edges, i .e . n edges which have no common endpoint .

Clearly if the permanent of a matrix M consisting of zeros and ones
is positive, then the matrix M does not contain a row or column all elements
of which are equal to 0 (called in what follows for the sake of brevity a 0-row
resp. 0-column), but conversely, if M does not contain a 0-row, nor a 0-column,
it is not sure that its permanent is different from 0 . However, from our result
it follows that this is 'almost" sure . As a matter of fact, Theorem 1 can be
interpreted as follows : if P(n, N) denotes the probability that perm (M) > 0
and Q(n, N) the probability that M does not contain a 0-row or a 0-column,
then if N = N(n) is chosen so that for n -) co we should have Q(n, N(n)) -* 1,
then we have also P(n, N(n)) 4 1 .

One can state this result somewhat vaguely also in the following way :
if the permanent of a random matrix with elements 0 and 1 is equal to 0,
then under the conditions of Theorem 1 this in most cases is due to the presence
of a 0-row or a 0-column .

In § 2 we deal with a somewhat simpler variant of the problem, when
the elements stj (1 < i -<_ n, 1 < j < n) of the matrix M are independent
random variables each taking on the values 0 and 1 with probability 1 - p
and p respectively . The results obtained are analogous to those of § 1 . In § 3
we add some remarks and mention some unsolved problems .

Besides elementary combinatorial and probabilistic arguments similar
to that used by us in our previous work on random graphs (see [1], [2], [3],
[4], [5]) our main tool in proving our results is the well-known theorem of
D. KÖNIG (see [6]), which is nowadays well known in the theory of linear
programming, according to which if M is an n by n matrix, every element
of which is either 0 or 1, then the minimal number of lines (i .e . rows or columns)
which contain all the 1-s, is equal to the maximal number of 1-s in independent
position. As a matter of fact, for our purposes we need only the special case
of this theorem, proved already by G . FROBENIUS [7], concerning the case
when the maximal number of ones in independent position is equal to n .

§ 1. Random square matrices with a prescribed number of zeros
and ones

Let P(n, N) denote the probability of the event that the random matrix
M (ME ,ff (n, N)) has a positive permanent . According to the theorem of
FROBENIUS-KÖNIG (see [6] and [7]) 1 - P(n, N) is equal to the probability
that there exists a number k such that there can be found k rows and n - k - 1
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columns of M which contain all the ones (0 5 k 5 n - 1) . If we denote by
Qk (n, N) the probability that there can be found k rows and n - k - 1
columns or k columns and n - k - 1 rows which contain all the ones, and k
is the least number with this property, then clearly

[
n 2 1 ]

(1 .1)

	

0 5 1 - P(n, N) = 2 Qk (n, N) .
k=0

Now we shall prove that if

(1 .2)

	

N(n) = n log n + cn + o(n)

where c is a real constant, then
[
n 2 1 ]

(1 .3)

	

Jim 2 Qk(n, N(n)) = 0,
n-.- k=1

further that
(1 .4)

	

lim Q0(n, N(n)) = 1 - e-2e-Q .
n-.=

Clearly (1 .1), (1 .3) and (1 .4) imply that

(1 .5)

	

lim P(n, N(n)) = e -2e"
n--

which is the result we want to prove . Thus it remains only to prove (1 .3)
and (1 .4) . Let us consider first (1 .4) . Clearly 1 - Q 0 (n, N (n)) is equal to the
probability of the event that the random matrix M does not contain a 0-row
or a 0-column . Thus we have

2.

(1 .6)

	

1 - Q0(n, N(n))

	

Si
i=0

where So = 1 and
(n-h) (n-i+h)

_ `

	

( n lf	N(n)
(1 .7)

	

Si-

	

(nhill-hl

	

n2 l

	

(i=1,2, . . .,2n),

fN(n)
further for each 1 > 0

21+1

	

21

(1 .8)

	

(- 1)' S i 5 1 - Q0(n , N(n)) < 2 (- 1 )` Si .
i=0

	

i=0

As clearly for each fixed value of i and for n - ~, if N(n) is defined by (1 .2)
we have

2' a- c'
(1 .9)

	

Si = i	
(1 +0(1)),

457
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it follows that

(1 .10)

	

lim (1 - Q0(n, N(n))) _

	

(- 1)` 2` e et = e-2e- .
n--

	

f-~

	

2t

Thus (1 .4) is proved . Now let us prove (1 .3) .
Let us suppose that M is a matrix such that all the ones of M are con-

tained in k columns and n - k - 1 rows (k > 1), and k is the least number
with this property . Then the matrix M can be partitioned into four matrices
A, B, C, D as shown by Fig . 1, so that D consists only of zeros . Then clearly
each column of C contains at least two ones, because if a column of C would
contain not more than a single 1, then by leaving out this column and adding
the row in which this 1 is contained, we would get a system of k - 1 columns
and n-k rows which contain all the ones, in contradiction to our supposition
of the minimum property of k .

k

	

n-k
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A

C

Fig. 1 .

Thus it follows that

k (n(n-k-1)+k(k-1)~
(1 .11)

	

Qk(n,N)<2~nll n 1Ik+1~

	

N-2k
kill k+1

	

2

	

(n21
N

and thus, that

(1 .12)

	

Qk(n, N(n))

	

A log2 V	 g2 n lk for

	

k = 1, 2,
n

B

D

where A is a positive constant depending only on c . Thus we obtain

n-I
z

	

A loge n
(1 .13)

	

Qk(n, N(n)) < _	
-

	

Vn - A loge nk-1

From (1 .13) we obtain (1 .3) and this completes the proof of (1 .5) .
Thus we obtained the following
Theorem 1. Let ,//(n, N) denote the set of all n by n square matrices, among

the n2 elements of which N are equal to 1 and the other n2 - N to 0 . Let M be
2

selected at random from the set c,g(n, N) so that each of the (N elements of the

set ~,ff (n, N) has the same probability ( n

	

to be selected. Let P(n, N) denote
N



s

(2 .2)

(2.3)

n-.
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the probability of the event that the permanent of the random matrix M is positive .
Then if

N(n) = n log n + cn + o(n)

where c is any real constant, we have

lim P(n, N(n)) = e-2e-` .
n- .

§ 2. Random matrices with independent elements

In this § we prove the following theorem which is a variant of Theorem 1 .
Theorem 2 . Let Mn (p) be a random n by n matrix whose elements Eij

(1 _<_ i < n; 1 < j < n) are independent random variables such that

(2.1)

	

P(eij = 1) = p and P(,-ii = 0) = 1 - p .

Let Pn (p) denote the probability of the event that the permanent of the
random matrix Mn (p) is positive . Then we have for

-
lo ng+ e

pn
	 +0

~n~
-

lim Pn(pn) = e-2e .
n-

Proof of Theorem 2. The proof follows step by step the proof of Theorem
1 . We have

I n
2 11

(2.4)

	

0 < 1 - Pn(p) < .2 Qk,n(P)

where Q k, n (p) denotes the probability that there can be found k rows and
n - k - 1 columns, or k columns and n - k - 1 rows of Mn (p) which
contain all the 1-s, and k is the least number with this property . In this case
we have

2n
(2.5)

	

1 - Qo,n(p) _ 2n (- 1) i S*
t=0

where So = 1 and
`

(2 .6)

		

(nj

	

n
S* _

h li -

Thus we have for each fixed value of i if (2 .2) holds

21e-ic
(2 .7)

	

lim S* _

and therefore
n-.

hl (1
- p ) in-h(i-h)

i!

lim (1 - Qo,n(pn)) = e-2,1 .
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On the other hand we have now for k = 1, 2, . . . , L
2

n

	

n

	

k -}- 1 k
2k

	

(k+1) (n-k)
Qk,n(p)

	

2 f k f k -~ ll f 2, p (1 - p)(2.9)

and thus
(

	

n - 11
(2.10)

	

Qk,n(pn)

	

B log2 n k
S		for k = 1, 2,

,

	

. . . ,	
2

	

,

where the constant B depends on c only .
Thus

n

(2.11)

	

lim 2 Qk,n(Pn) = 0
n- k=1

and Theorem 2 follows .

§ 3. Some further remarks

The results of §§ 1 and 2 could be generalized for rectangular matrices
of size m by n where m < n. In this case the question is : what is the proba-
bility that a random matrix of size m by n consisting of zeros and ones should
contain m elements in independent position, which are all equal to 1 ?

Another possible generalization of our results would be to determine
the probability distribution of the maximal number of ones in independent
position in a random square matrix .

One may ask what can be said about the distribution of the value of
the permanent of a random square matrix, under conditions of Theorems
1 and 2? It is easy to compute in both cases the mean value of the permanent
perm (M) ; we have evidently under conditions of Theorem 1

n2 - n

E( perm(M= n 1 fN(n)-n,
(p

	

)) n 2

N(n)
and under conditions of Theorem 2

E(perm(Mn(pn))) = n! pn
It is easy to see, that these expressions are of the form enlog(ogn+0(n)
and thus tend rather rapidly to ±00 . However one can not draw any conclus-
ion from this fact, because as is easily seen, the variance of the permament
is still much larger than the square of the mean value . An interesting related
problem is of course to evaluate under the conditions of Theorem 1 and 2 the
probability of the determinant 'of the random matrix being different from 0 .

Another problem arises in connection with the graph-theoretical inter-
pretation of the questions discussed in the present paper : To compute the
probability that a random graph having n vertices and N edges should contain
a factor of the first degree? We hope to return to these problems in another
paper .

(Received November 11, 1963)
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